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Based on right-censored data from a lifetime distribution Fo, a kernel-

type estimator of e quantile function Q"(p), defined by

n(p) h hn nt)K((t-p)/hn)dt, is studied. This estimator is smoother

than tk- product-limit quantile function.0n(p) - inf(t: Fn(t) p), vhere

Fn denotes the product-limit estimator o - from the censored sample.

Under the random censorship model and gineral conditions on hn, K, and Fo,n

asymptotic normality of 0n(p) and a simpler approximation to it, Qn(p), is

shown, and mean square convergence of 0n is proven. Also, the asymptoticn

mean equivalence of Qn and Q is shown.
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1. INTRODUCTION AND PRELIMINARIES

For any probability distribution G, denote the quantile function by

Q(p) a G- (p) inf(x: G(x) > p), 0 < p < 1. From a random (uncensored)

sample from G, the sample quantile function Gn (p) - inf~x: G(X) > p),
n n

0 < p < 1, has been used to estimate O(p), where Gn denotes the sample

distribution function. Csorg8 (1983) gave many of the known results

concerning G~ (p). Also, Falk (1984) studied the relative deficiency of the

sample quantile with respect to kernel-type estimators, and Falk (1985)

obtained asymptotic normality for kernel estimators. Yang (1985) obtained

some convergence properties of kernel estimators of Q(p) and-gave simulation

results comparing kernel-type estimators with other estimators. For

arbitrarily right-censored data, Sander (1975) proposed estimation of O(p)

by the quantile function of the product-limit estimator, and she and Cheng

(1984) derived asymptotic properties while CsorgO (1983) presented strong

approximation results for that estimator.

For randomly right-censored data, Padgett (1985) proposed a smooth non-

parametric estimator of the quantile function, defined by

Q (p) h-1!Q (t)K((t-p)/h )dt, where On denotes the product-limit quantile

function and K is an appropriate kernel function. An approximation to

On(p), denoted by Qn(p), which is somewhat easier to compute was also

studied. The estimator 0n' mentioned briefly by Parzen (1979), was shon to

be strongly consistent, and 0n and n were shown to be almost surely

asymptotically equivalent. Lio, Padgett, and Yu (1985) obtained an

asymptotic normality result for 0n and shoved that 0n and Qn aren n n

asymptotically uniformly mean square equivalent under certain conditions.

In this paper, some further asymptotic normality results for 0n and

n
0n will be given. Also, their asymptotic mean equivalence and the mean

no.. . . .-. .
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square convergence of a will be shown. To define these estimators, let

Xo,..,Xodenote the true survival times of n items or Individuals that are

censored on the right by a sequence U1 ,U2,...U n, vhich in general may be

either constants or random variables. It is assumed that the X°'s are

nonnegative independent identically distributed random variables with common

unknown distribution function 0 and unknown quantile function 0 (p) . •,.

The observed right-censored data are denoted by the pairs (Xiai)-

i=1,...,n, where

1 if X

i min[X ,Ui), 0 if > .

Let (Zi,Ai), i-1,..,n, denote the ordered Xi's along with their

• . corresponding Ai's. A popular estimator of the survival function So - 1-Fo

* is the product-limit estimator of Kaplan and Meier (1958), shown to be

"self-consistent" by Efron (1967) and defined by

1, 0 t zjj

n-iAn(t)- )Ai k t <tZ , k-2,...,n "'.--

0, t > Zn •

*Denote the product-limit estimator of F (t) by Fn(t) -1 -n(t), and let

3 denote the jump of Pn at Z1, that is,

(Z), j.

S( P - J 2,...,n-1..-

~~P ( Z n ,J = .

Note that s -O if and only if A1 - 0, j n, i.e. whenever Z is a censoredSi """ ""

observation. Also, denote Si a Fn(Z1 +i) = i - s, i=1,...,n, with

S O0 , Z0  0, and Zn+1m Zn + e, for some positive constant C.

--_ _;. -_ _ ._ -' ,. ..--.-_ .-: ' .- , ..'. ' ..'. ' " ' .' ' " ." '. ..' ., ' , ...... , ---......., .I. , ." .'
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It is natural to estimate i by the product-limit quantile function

%n(p) u - inf[t: Fn(t) k p). Then the kernel-type estimator 0,(p)

studied by Padgett (1985) is vritten as I-'.-

Qn(p) - a Qn(t)K((t-P)/hn )dt

n Si
hn Z Zi I K((t-p)/hn)dt,

i:a. (

for kernel function K and bandwidth sequence (hn]. Also, the simpler.

kernel-type estimator on which is an approximation to (1.1) is defined by. n
Qn() hn i  Z isi K((S i - p)/hn). (1.),,

For the results here, the random right-censorship model will be

assumed; that is, U1,...,U n constitute a random sample from a distribution

H (usually unknown) and are independent of XI... The distribution'-

function of each Xi, -l1,...,n, is then F - 1 - (1-FM)(1-H). In addition,

some or all of the following conditions will be assumed for the kernel

function, bandwidth sequence, and lifetime and censoring distributions:
(h-1) ha "0 0 as n -4- -::.-...

(K.i) K(x) is a bounded probability density function which has

finite support, i.e. K(x) a 0 for lxi > c for some c > 0;

(K.2) K is symmetric about zero;

(K.3) K satisfies a Lipschitz condition, i.e. there exists a constant

r such that for all x,y,

IK(x) - K(y)j rjx -y;

(F.1) F is continuous with density function fe"

These conditions are not prohibitive and the conditions on Fo are similar

to conditions required by Cheng (1984).

2. ASYMPTOTIC NORMALITY

Lie, Padgett, and Yu (1985) showed that under conditions (h.1),

.-.... ;. ...-. aa. ,...... .. . ............. .. .... . . . . . :.
:';' -"- ' ' '-''=''": "- " " " " " "" "" '" ""° • . . ... ' -' ° : " ' ,' .. . '':'';''",%' . "'[,"'"--'."".v ',- -,-' -.
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0-

(K.1)-(K.2), and (F.1), if the derivative f0 is continuous at ~

f V)> 0, and f~h n 4 0, then for 0 < p < T, where T < min(1,T -i
H(P0 )

with T -sup (t: 0(F(t))<1), n%[Q n (p) - Qo(p)J -* Z in distribution

as n 4 w, here Z is a normally distributed random variable with mean zero
0

2 2 1; -2 2 0*
and vaiance (1-p) 1[1-F(u)I dF (u)/f ( S). Here F0(u) *

P(Xi~u, 41..1) is the subdistribution function of the uncensored

observations. The condition n'Ahn 4 0 can be replaced by A ~n -e 0 by using

a slightly different proof than that of Lio, Padgett, and Yu (1985).

Define ~ ~ J; 0(h - l1Q(t )K((t-p)/h~ )dt for 0 p S 1. An asymptotic

normality result for (1.1) can be obtained without the condition on the rate A

of convergence of h nto zero by centering with 0 (p,h n) instead of Q (p).

This type of centering seems to be required for asymptotic normality of

Qnp)

THEOREM 2.1. "iuppase (h.1), (K.1), ([.2), and (F.1) hold and f is -
0

continuous at with f (E0) > 0. Then for 0 < p < T, .,

n W[0n (p) - Q0(p~h~) n Z in distribution as n - ,where Z is normally

distributed with mean zero and variance 2~

The proof of Theorem 2.1 follows from the following lemma proven by

Lio, Padgett, and Yu (1985) and from Corollary 1 of Cheng (1984).

LEMMA 2.1. Under the conditions of Theorem 2.1

l0[q(t q q(p)1h_1K((t-p)/h )dtj + 0 in probability

as n 4,where q n(t) -n [Qn (t) 00Q(t)J denotes the product-limit quantile

process.

The asymptotic normality of (1.2) follows from Theorem 2.1 and the next
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lemma. 

.. .

LEMMA 2.2. In addition to the conditions of Theorem 2.1, suppose (K.3)
o2 .:

holds and E(X < < . Thenan , 

sup n[Qn(p) - Qn(p)] * 0 in probability, 
I-

O P~r

provided hn
4,'og log n/n 4 0.
lo g _T ns 0.

PROOF. For 0 5p 5T, when si> 0, i.e. when Z is uncensored, letS

be an interior point of the interval (SiI,Si) vith probability one so that

siY (S - I K( 4L)dt a.s.

n i n

Let IA be the indicator function of the set A and let i* be the smallest

i < n such that Si+I-T > hnc, vhere c is the constant in (K.1). If no such

i exists, then let i n. By (K.3),

* nP~2 I[O,TlPr1
-" "%

n[Qn(p) - ,

nh {n Zi '-p [K-))](O,T]lP)' S*()
n ni [Kicn

r~nh- 2 { n Zi 1ih 2Si SI[o,T(P)I ch (P)}

Sn E ii n I , (i)i-i [OT] IS*hil
[0,F 

Zi n

-4 2 snX Z2dF (Zi)ns I  (i)
r2 hn0 i-if [Onx) Foi~ IJ 1 1 *

vhere TF a sup (t: Fo(t)<l).

From Sander (1975), for i 1 i*, 0 5 nsi  [ 1-H(Fo 1(T))]-I 0 (1),
0.-

I-. . . . . . . -A.--< Y~A-. . . . . . . . . . . . . ±.-.''
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vhere Op(l) denotes a term converging to zero in probability as n * -. By

the results of I6ldes and Rejt5 (1981), sup In(X)-Fo(X)I 

0

O((log log n/n) ) with probability one, and by a proof similar to that for
2~ O 0""Theorem 4.1 of Mauro (1985), E Z dFn(Zi)  ( ) in probability. There-E(X

i-i ";.-.)inpobbliy Tee

fore, •j*p- 0 2 1 (" (-

nP)-(P)]I[OT j(p) - Op(h;4(log log n/n) ),

completing the proof.

The following result for asymptotic normality of n is thereforen

obtained.

THEOREM 2.2. Under the same conditions as in Lemma 2.2, for 0 < p < T,

n (p) - 0(ph ) Z in distribution

as n - v -, where Z is a normally distributed random variable vith mean zero
2

and variance _.
p

3. ASYMPTOTIC MEAN EQUIVALENCE OF On AND On -

It is shown in this section that 0n and 0n are equivalent in the mean* n

and mean squared convergence sense. First, it is proven that Q,(p) - Qn(p)

converges to zero in the mean uniformly in p for certain choices of hn.

For any distribution function G, define TG - sup(t: G(t) < 1).

THEOREM 3.1. Assume that (h.1), (K.1) and (K.3) hold, B and F are

continuous with EIx 0  < -, and TF TH R m. Let * be such a function on
* 0

[O,1-F(T*)) that #(x) _x, +(x) * (0) 0 as x * 0+, and 1 - F(t)

#(1 - F(t)) for t c (TTF ), where T* is arbitrary vith T* < T Then
0 0

Z[ IQ*(P) - o(p)II O(*(d(l° nlog n)Y)hn 2 ),

where d > 1 is some constant.

~~~~. ....................................... .. #. . . ......... .%- . .~ * ." .- %"-:.-.-,-..-:,...,--.--..-...-......................................................................................................'...........:'**;', ,
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PROOF. As in the proof of Lemma 2.2, using condition (K.3), with

probabill ty one
hn I  nSi-p Si-p :.

I (p) - %n(p) I- h- Z s i IK(--) - K( ) In~ n "n "-

n
hr 2 z s (3.1)

-n i~ i

By continuity of F and using the definitions of Si and si, (3.1) is less

than or equal to

r 2 .O xIFn(x)  F n(x+) Wd(X)

21h- 2 . 0 xdFn(x) sup IFn(t) - Fo(t)I.
0 O<t _*rF 0

0

Thus, by Corollary 2(v) of Cs'org8 and Horvath (1983) and Theorem 3.1 of

Mauro (1985), the conclusion of the theorem follows.

Under similar conditions to those of Theorem 3.1, the asymptotic mean

square equivalence of 0n and Qn can be obtained for some useful choices of

the bandwidth sequence (hn..

THEOREM 3.2. Suppose that the conditions of Theorem 3.1 hold, replacing

ElIxo < by E(X° 2 ) <-. Then

S2 2 og log n %-4
E((Qn(P) - (p ))  02(d(l n..-

n nn n

PROOF. By an argument similar to the proof of Theorem 3.1, with probability

one

T
2(p) - ( 4r2h. oOx2d(x) sup IF(t) o(t)l 2 .

n a *P *<t l n' "

0

-7.



Again, the conclusion follows from Corollary 2(v) of Cs~rg8 and Horvith

(1983) and Theorem 3.1 of Mauro (1985).

From Theorems 3.1 and 3.2, if *(d(log log n/2n)~)~ An 0 as n

then Q* (p) and Q0 (p) are asympotically equivalent in the mean. If *is
chosen so that +(x) - (x/k) "/'l'1'1 , for some 0 < k < 1 and y 0, as in

example (1) of Cs~rg8 and Horvdth (1983, p: 416), then (for yWO and k-1)

the condition above becomes (log log n n 4 ,hich is satisfied by

n - for 0 < b < Y~and some positive constant D, for example.

4. MEAN SQUARE COVERGENCE

The following theorem yields the mean square convergence of 0n (p) to

0 (p) for appropriate choices of h . Also, combining Theorem 3.2 withn

Theorem 4.1 below gives conditions under which Q (p) converges in meann

square to 0 (p).

THEOREM 4.1. Let p0 be such that 0 1 p0 < min (1,T -1 Suppose (h.1)
H(F,)

and (K.i) hold, F0 is differentiable on some neighborhood of ,f 0 is

0 wih 0 o4continuous at C.' vith fo() > 0, and E(X ) < -. Then for 0 1 p <p

E(Q()- 0O(01 ) 5: g~n~h ), where g(n,h ) - 0(h) + 0(hn 5 1 
.

O(hn-5 /4 ) + O(h n-3/4 (log n)3 /4) +. O(n-5 /6 (log n) 5 /6) +

O(n-V(c1 (1-p) 
2 +4 c (l-p)h~ + c h2)) for some positive constants c1, c2  and

c3

It should be noted that an example of a bandwidth sequence (h) which

will give g(n,h 0Oas n *is h sc n.,O0< <5/2, here c >O0is 1
n n n n

bounded by some positive constant d.

The proof of Theorem 4.1 is obtained from the following three lemmas.
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LEMMA 4.1. Suppose (K.1) holds, F0 is differentiable on some neighborhood

of C*'vith fo( S) > 0. Then

rrT,o~ hu O() K(u)du) n ~h )

PROOF. By the conditions on F and f, there exists a neighborhood A(p) of
0 0

0so that A - su~p [f 0 (0 )) 1 < ** Hence, by condition (K.1), the

conclusion of the lemma follows.

LEMMA 4.2. Under the conditions of Theorem 4.1,

h IUCI (p+h u) - 0(p+h u)JK(u)duj

SO(hx 5 4 n .+O((log n/n)31 )

PROOF. Let Un denote the product-limit (PL) quantile process (Csorg8,

1983, Eq. (8.1.18), p. 118), and for each n choose "n -(log n/n). Define

the events An- sup IUn(p+h nu) -(p+h nu)I > en]. By Cheng (1984), for

-5/2large n, P[AJ- O(n )

nn

9 sulc [Oo(Un(p+hnu -
0(p+hnuIK(u)du IA

and

E2 E- J EUcQ( p+hn) -Q(p+h u)JK(u)du I)

*Using the Holder inequality,

JR1 (E[ jQ(U(p+hu))K(u)duJ P[A 1)

S(sup K(u) n' E-C On (t)dtl]
u

-Wn-5/4
Thus, by Theorem 3.1 of Mauro (1985), IE1I ~n E

FNow, for E1, using Taylor's expansion, there exists a between

Un(p+h nu) and p~ihnu such that

2 nn n 0El

-zu IE [f (Q0(M Wi (Un(p+h~u - (p~h u)

.....................
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+ nn(p+hnu)JK(u)du IA

n

-~ ~ ~ ~ n a~foQ()I n~(p+h u)K(u)du I c~I,

where xndenotes the uniform PL - empirical process (Csirg8, 1983,

p. 117). For n sufficiently large, Il/f (0"(&))lI 5A, vhere A is defined in

v the proof of Lemma 4.1, and by Cheng's (1984) Theorem 2, for large n,

sup [ (p+h u) - (p~h u) , t'aL (pih u)

-c ft~ nA

3/40((log ft/n) (4.1

* SiftCC ~Ef~cf n a (p+hu)IK(u)du(' ) < ,adtepoo sCmltd
'AA

LEMA .3 Supoe heconiton ofThorm .1 ol. he

< n. A E .f Im (p . .)nIK(~ un Ku



R fe OQn (p~nU) -00(p+h nu)K(u)du])2
O-5/6 5/2 -%&-5/4

~ O~n (log n) )+ O(h r )
A2 2

+ 0(n (c1(1-p) + c2(1-P)h~ e ch))

PROOF. As in the proof of Lemma 4.2, write W

0 2
EL[c (Jnh U) a 0 (p+h u))K(u)duJ) -_E3  E,

where

R 3 E(c QOn(~hnU (p+h nu))K(u)dul I C)

* and

E14 = ([ce(On (p+hn U) - Q(p+h nu))K(u)du12 I .
n

Now,

fE 4 1 E([J-cCn (p+h nu)K(u)du)II A
n

S(E[I(.fc c 2 (p+h u)K(u)du) 2  *(

(ET {E f (p+h u)K(u)duJ]) n-5/4 -.-

S[sup K(u)]~ (h'11JQ4( t)dt)* n-5/4nl n

I J&- -5/4(4)

by H6lder'3 inequality and Mauro's (1985) Theorem 3.1.

Next, using the Taylor expansion as in the proof of Leoma 4.2,

11 31 l(I ( (oo) ) (U(p+hnu - ph)7

+ n s(p+h u))K(u)duJ2 )On n

+ IE(LIfc(f 0(0(Q()))nan(p+h nu)K( u)dul ) I

+ 2IE(JIc (fo(Q (&))) [Un(phn - (p+h U)

+ ni (p~hu)JK(u)du

x IC (fo(Q 0(E)))ln- '2ph u)Ku)du)l

E 31 +1932 + 933'

*Nov, as In the proof of Lemma 4.2,

3/4 2 3/2E311 S [O(log n/n) )J- ((log ri/n) ).*
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Also,

R32 - - E Lc (fo(Q° (&))) - (i (p+h u)
32 0n n

n-%K*(P+hnUn))K(u)du] 2 I
+ n-  EU2. jc ( o(]() ) )n-AK*(PhnU)K(u)du) 2 1 ':-:'..

nn

+n-* 2EUCc(fo(Q(]°() )l -1 %(P+hnU)

-n-l*(p* ° ))u)du )  21nC0

4.n ' JE~ (f ( ( t)))'m~~ u)L~2~2 *
n 44 [O(n -/3(log n) 5/2)]2

2 K* 2(h u~) 2

" A2n-YE(Jcn-lK (P+hnUn)K (u)du)

-C 

I

2A 2n-*O(n-/3 (log n)5/2)E n-IK*(P+hnu,n)IK(u)du. (4.5)

Since n-%k*(tn) is a Gaussian process in t, the last expectation in (4.5)

is finite, and by Fubini's theorem and section 8.2 of CsBrg8 (1983), for n

sufficiently large,

E(Ccn-K *(p+hnu,n)K(u)du}

= 1c[1-(P+hnu)j 2 0 n dx K(u)du
(1-x)2(1-Hl0°(x))),--.-

o dx [ J(l-p)2 K(u)du

22
(1-x)2(1-a(o°(x))) '

+2(1-p)hnJ'cuK(u)du+h 21c u2K(u)du]. (4.6)

Therefore, from (4.6) and condition (K.1), (4.5) yields for appropriate >-.

constants cl, c2, and c3

1321 5 O(n-7/2(log n)5/2) + n-[cl(1-p)2 + c2(1-p)hn + c3h2].

Similarly, since lEfC(fo(Q(&)))-ln-cn(p+hnu)K(u)du <"

E3 -(n-516(log5/6 n)5/2
1331 On- (on) )

Therefore, combining these results for E3,  --

E(Jc(Qn(P+hnu) - 0°(p+h u))K(u)du12J)

O 0(h -n-5/4 O((log n/n)31 2)+ O(n-71 2 (log n) -5/2
n

+ O(n- [c(l-p)2 + c2(1-p)h h2 + O(n-5 6 (log n)
+ C2 l~P~n +c3h]

::::-

* * .~:~d~,***~_.
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-O(h An -5/4  + O(n-5/6(log n)
5/2)

+ O(n -lc(1-p) 2 + c2(1-p)h n + c3h2l)

completing the proof.

The proof of Theorem 4.1 is then obtained from Lemmas 4.1-4.3 by

vriting, for sufficiently large n, ...

g(Q n(p) - Qo(p)12 -

- E([Jcc(Qn(p+hnu) - Qo(p+hnu))K(u)du]2 -

+ [rC (0 (p+h U) - QO(p))K(u)du]2

-c n

+ 21'- [0°(p+hnu) - 0 (p)]K(u)du

x E(°( (p+hu) Q0(p+hnu)]K(u)du.

It should be noted that the conditions of Theorem 4.1, as well as those

of the other theorems in this paper, are not restrictive and are similar to

conditions for results for right-censored data obtained by previous authors.

See Chapter 8 of Csorg8 (1983) for various references and Cheng (1984),

for example.

.

~ s...-:-: - ~.......*-.**.*.* =



14

REFERENCES .,...

BURKE, M.D., CSORG8, S. and HORVATH, L. (1981). Strong Approximations
of Some Biometric Estimates under Random Censorship. Zeitschrift fur
Vahrscheinlichkeitstheorie und Verwande Gebiete, 56, 87-112.

CHENG, K.F. (1984). On Almost Sure Representations for Quantiles of the
Product Limit Estimator with Applications. Sankhya, Ser. A 46, 426-
443.

CS'RGO, M. (1983). Quantile Processes with Statistical Applications.
CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM,
Philadelphia, PA.

CSORG', S. and HORVATH, L. (1983). The Rate of Strong Uniform Consistency
for the Product-Limit Estimator. Zeitschrift fur Vahrscheinlichkeits-
theorie und Vervande Gebiete, 62, W11-426.

EFRON, B. (1967). The Two-Sample Problem with Censored Data. Proceedings
of the Fifth Berkeley Symposium, 4, 831-853.

FALK, M. (1984). Relative Deficiency of Kernel Type Estimators of
Quantiles. Annals of Statistics, 12, 261-268.

FALK, M. (1985). Asymptotic Normality of the Kernel Quantile Estimator.
Annals of Statistics, 13, 428-433.

POLDES, A., and REJT6, L. (1981). A LIL Type Result for the Product Limit
Estimator. Zeitschrift fur Vahrscheinlichkeitstheorie und Vervande
Gebiete, 56, 76-86.

KAPLAN, E.L., and MEIER, P. (1958). Nonparametric Estimation from
Incomplete Observations. Journal of the American Statistical
Association, 53, 457-481.

LIO, Y.L., PADGETT, V.J., and YU, K.F. (1985). On the Asymptotic Properties
of a Kernel-Type Quantile Estimator from Censored Samples. Journal of
Statistical Planning and Inference, in press.

MAURO, D. (1985). A Combinatoric Approach to the Kaplan-Meier Estimator.
Annals of Statistics, 13, 142-149.

PADGETT, W.J. (1985). A Kernel-Type Estimator of a Quantile Function from
Right-Censored Data. Journal of the American Statistical Association,
-in press

PARZEN, E. (1979). Nonparametric Statistical Data Modeling. Journal of
the American Statistical Association, 74, 105-121.

SANDER, J. (1975). The Weak Convergence of Quantiles of the Product Limit
Estimator. Technical Report 5, Stanford University, Dept. of
Statistics.



15 ~
-- '~~' Smooth Nonparametric uncon

of a Quantil Fti
YANG, -- 

a.?

Journal of the American Statistical Association, in press.

1. ~*

~. .

* .

-~ *

41~

-p

I,

-7--.-

a-*........%.**..*..~* -.- ..-..--...



.'

UNCLASSIFIED o I
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Is. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED _ _--_-__•_-
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT -

Approved for public release; distribution
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

Stat. Tech Rep. No. 108 (62G05-14) AF,.), .

6. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a& NAME OF MONITORING ORGANIZATION

Department of Statistics Air Force Office of Scientific Research

6c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)

University of South Carolina Directorate of Mathematical & Information
Columbia, SC 29208 Sciences, Bolling AFB DC 20332

Be. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
AFOSR, ARO NM AFOSR-84-0156

8c. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNITBolling AFB DC 20332 ELEMENT NO. NO. NO. NO.

11. TITLE fInci de Security Clasification) 6..2.204A
Some Convergence Results for Kernel-Type Qua ile Estimato s under Cqnsoring

12. PERSONAL AUTHOR(S) '', .

Y. L. Lio and W. J. Padgett
13. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT

-- \ . -, FROM TO 1985 November 15
IS. SUPPLEMENTARY NOTATION

17. COSATI CODES IS. SUBJECT TERMS (Continue on rvuerse if necmemry and identity by block number)
FIELD GROUP SUB. GR. Random right-censorship; Kernel estimation; Product-limit

quantile function; Asymptotic normality; Mean convergence;
Mean-squared error.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Based on right-censored data from a lifetime distribution Fo, a kernel-type estimator

of the quantile function QO(p), defined by 0 (p) - h-ll )dt, is studied.--

This estimator is smoother than the product-limit quantile function Q (p) '
n

inf{t: F n(t) a p}, where F denotes the product-limit estimator of F from the censoredn n O

sample. Under the random censorship model and general conditions on hnp K, and Fos

asymptotic normality of Q (p) and a simpler approximation to it, Qn(p), is shown, and meann•LI
square convergence of Q is proven. Also, the asymptotic mean equivalence of Q and Q ... -

n n n
is shown.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED SAME AS RPT. 13 OTIC USERS 0 UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL

(Include Area Code)

Maj. Brian W. Woodruff (202) 767-5027

D FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE. UNCLASSIFIED -." -
SECURITY CLASSIFICATION OF THIS PAGE

"'., . -'.. - . .. .. ............. "..-..- '-.".-......,,.'..-......... '.....,....... -L- ".5"'i..-',i5- -L '-,.5L. > ->' ",
. . . . . ..'....-. . . . ..-. .-. . ..-.. ..-.-. .... . . ..'. ..-.-'. ..-''. . ..'. .-. ..'-.J'' ''--""" -- -".'."--. - •" ' " . - . " ' ' ,,• : '. -,



I'I

!i

I

*:.|

~FILMED

-o . °. ,


